An Investigation into the Speed of the C++ Standard Library String Find Function
By Dan Bennett

Introduction
In this section describe what you are doing at a high level and why you are doing this.
The c++ standard library contains many useful classes. Chief among these is the string class. The string class provides a convenient tool for storing and manipulating collections of characters. Among the methods associated with this class is the find function. The find function will locate an occurrence of a key word in a given text. The purpose of this experiment is to evaluate the efficiency of the string find function in the standard library. In particular the performance of finding keywords in large text strings is investigated.
Methods
Describe exactly what you are doing. Give conditions, describe tools and techniques.
For this investigation the following algorithm was employed:
Generate a random text of a given size.
Generate a random keyword of a given size
Compute the time required to find all occurrences of the keyword in the text by repeatedly calling the string find function.
This algorithm was implemented in C++. The code is given in Figure 1: Code for the Basic Experiment.
[image:]
[bookmark: _Ref93647668]Figure 1: Code for the Basic Experiment
Random characters for both the text and the keyword was generated using the Mersenne Twister 64 bit engine supplied in the standard C++ library with values chosen between ‘a’ and ‘z’ inclusive.
Timing was performed using the standard library’s high resolution clock. All times recorded are in milliseconds.
Tests were conducted with text sizes varying from 10,000 characters to 160,000 characters. The keyword size ranged from 2 characters to 64 characters.
The test was conducted on a quiescent, (load average approximately 0 when the test began) intel I7-2600 running at 3.40GHz running Fedora 30. The default fedora GCC version 9.3.1 was employed.
Results
In this section present what happened. No discussion. This is simply a summary of the results.
The primary results are given in Table 1: Primary Results. The table shows variation in time, given in milliseconds, as both the text size (given in the first column) and the keyword size (given in the top row) are changed. The final two columns shows the average for all runs for a given text size, and finally the average per 10,000 characters of text.
	Text Size
	2 Letters
	4 Letters
	8 Letters
	16 Letters
	32 Letters
	64 Letters
	Average
	Average Per 10,000

	10,000
	0.70
	0.66
	0.69
	0.68
	0.72
	0.71
	0.70
	

	20,000
	1.25
	1.31
	1.35
	1.33
	1.43
	1.44
	1.35
	0.68

	40,000
	2.43
	2.57
	2.72
	2.67
	2.84
	2.83
	2.68
	0.67

	80,000
	4.86
	5.15
	5.41
	5.33
	5.69
	5.70
	5.36
	0.67

	160,000
	9.76
	10.37
	10.81
	10.64
	11.33
	11.42
	10.72
	0.67

[bookmark: _Ref93648678]Table 1: Time for various find functions, Text size and keyword sizes are in characters, while time values are in milliseconds.
Discussion
This is your place to interpret the results and describe what you found. It is most likely you will lend with a list of additional experiments you should present.
From Table 1 it is reasonably clear that the find function is nearly linear. Notice that the time in each
[bookmark: _Ref93649746]Figure 2: Text Size vs Time by Keyword Size
column nearly doubles as the text size doubles. Finally notice that the average per 10,000 is reasonably consistent. It can be observed in Figure 2: Text Size vs Time by Keyword Size, that the data approximates the linear fit line computed by excel. This supports the conclusion that the find function of the c++ string class is approximately linear.
There are several experiments that would be worth performing. First, it would be interesting to vary the alphabet size. In the current experiment, the alphabet is limited to 26 characters. While it is not expected that expanding the alphabet size would have a significant impact, reducing the size to 4, to be closer to a genetic pattern, might have a significant impact.
A second experiment would involve using actual text. The current text is strictly random, as are the keywords. Using an appropriate text in English, with corresponding English keywords would provide a more realistic test environment.
Conclusion
Just summarize your results.
[bookmark: _GoBack]In this experiment, the speed of the c++ string find function was investigated. Under the test conditions it was found that the function appears to be linear or nearly linear in nature.

Text Size vs Time (ms)

2 Letters	10000	20000	40000	80000	160000	0.70347400000000004	1.2489399999999999	2.4332699999999998	4.8597799999999998	9.7586300000000001	4 Letters	10000	20000	40000	80000	160000	0.66391100000000003	1.31047	2.5747200000000001	5.1497999999999999	10.370200000000001	8 Letters	10000	20000	40000	80000	160000	0.69480799999999998	1.3499699999999999	2.7201200000000001	5.4085299999999998	10.8085	16 Letters	10000	20000	40000	80000	160000	0.68063399999999996	1.33168	2.6678999999999999	5.3283100000000001	10.6371	32 Letters	10000	20000	40000	80000	160000	0.71818700000000002	1.42855	2.83527	5.6927500000000002	11.324999999999999	64 Letters	10000	20000	40000	80000	160000	0.71126299999999998	1.4424399999999999	2.83331	5.70322	11.419499999999999	Text Length

Time in ms

image1.tmp
word i
for(i =0; i< length; ++i) {
word += static cast<char>(source());

}
key =
for(i = 0; i < keylength; ++i) {
key += static cast<char>(source());
}

timer.Continue () ;
int finds{0};
for (pos = word.find (key) ;

pos != string::npos;

pos = word.find (key,pos+1)) {
finds++;

}

timer.Stop();

