COMPUTE

R

RECREATIONS

Sharks and fish wage an ecological

war on the toroidal planct Wa-Tor

by A. K. Dewdney

only be called recreational at a dis-

tance limited only by one’s pro-
gramming prowess, the planet Wa-Tor
swims among the stars, It is shaped like a
torus, or doughnut, and is entirely cov-
ered with water. The two dominant den-
1zens of Wa-Tor are sharks and fish, so
called because these are the terrestrial
creatures they most closely resemble.
" The sharks of Wa-Tor eat the fish and
_the fish of Wa-Tor seem always to be in

plentiful supply.

This simplemindéd ecology might ap-
pear stable, almost soporific, were it not

_for the fact that the shark and fish pop-
ulations undergo violent oscillations.
Many times in the"past the fish popula-
tion has been all but devoured, whereas
at other times the sharks have starved
almost to extinction (even when there

-were plenty of fish). Yet both sharks
and fish survive. To discover why, I de-
signed a program to simulate their feed-
ing and breeding activities.

Before I had ever witnessed these
ecological rhythms on a display screen,
however [see illustration on page 19); 1
mused for a long time about the rules
and the details of the WATOR pro-
gram, Over lunch one day I found my-
self musing across the table from David
Wiseman, who is my department’s resi-
dent. systems wizard at the University
of Western Ontario. After describing
the project to him I neticed that Magi
(for such is Wiseman called) was smil-
ing enigmaticaily. The next morning he
proudly-ushered me into his office to dis-
play a working program.

Somcwhere, in a direction that can

“Watch,” he said and pressed a key..
An initially random assoriment of fish.
and sharks flickered slowly from point .

to point in what seemed to be a chaotic
- manner. Some sharks failed to eat and
- disappeared. Other sharks had offspring
- just as voracious as themselves. A few
fish, lucky enough to occupy z region
- where there were currently no sharks,
multiplied into a large school. Present-
ly a number of sharks discovered’ the

" school, congrégated atl-its edges and

- gulped their way a short distance intoit.

‘between the vertical extremes..

A few minutes later the summary of

_ current statistics displayed on Magi’s

screen told the story: there were now
578 fish and just 68 sharks.

Someone walked into Magi’s office
and ran out again. Before five minutes
had elapsed the room was crowded with
people cheering on the sharks. Slowly a

wall of sharks closed in on the hapless -

fish. Elsewhere on the screen a small
school of fish slowly multiplied unno-
ticed. Groans went up when the large
school of fish finally disappeared and
sharks, dying one by one, milled about
fooking for prey. I thought of changing
the rules to allow sharks to eat one an-
other, but Irealized thata feeding frenzy
would not -significantly prolong their
existence and might put the early histo-
ry of that other small school in jeopar-
dy. When two roaming sharks finally
stumbled onto it, the cycle began anew.

The program for Wa-Tor is neither
very long nor difficult to write. Read-
ers who have personal computers, even
those with little programming experi-
ence, will find it a rewarding project
when the code is finally written, de-
bugged and running. Parameters such
as breeding times, starvation periods
and initial population sizes can be set
before a run. It is then just a matter of
sitting back and watching as an initiaily

.disorganized mélange of fish and sharks

stowly forms ecological patterns.
The WATOR program embodies a
number.of simple rules that govern both

. shark and fish behavior. The creatures

swim in a rectangular ocean grld whose

opposite . sides are identified in pairs..

This means simply that if a fish or shark
occupies any rightmost grid point-and
decides to swim east (to the right), it

will reappear at the corresponding left-

most grid point. The same relation holds
The
resulting two-dimensional wraparound
space is really just a torus, the actual

" surface of Wa-Tor [see illustration on .
page 20]. Anyone writing his or her own .
“WATOR program may select any con-.
~vehient size for the ocean grid. For ex-. .
-ample, Magi, whose program runs on’

a VAX computer, has set up an ocean
that is 80 points wide and 23 points
high. My own version of WATOR, writ-
ten for an IBM PC, uses a humbler, 32-
by-14 ocean.

Time passes in discrete jumps, which [
shall call chronons. During each chro-
non a fish or shark may move north,
east, south or west to an adjacent point,
provided the point is not already occu-
pied by a member of its own species. A
random-number generator makes the
actual choice. For a fish the choice is
simple: select one unoccupied adjacent
point at random and move there. If all
four adjacent points are occupied, the
fish does not move, Since hunting for
fish takes priority over mere movement,
the rules for a shark are more compli-
cated: from the adjacent points occu-
pied by fish, select one at random, move
there and devour the fish. If no fish are in
the neighborhood, the shark moves just
as a fish does, avoiding its fellow sharks.

The creator of WATOR selects five
parameters in order to set up a given
simulation. The parameters nfish and
nsharks represent the numbers of fish
and sharks at the beginning of arun. The
program distributes the specified num-
bers of fish and sharks randomly and
more or-less uniformly across the plan-
et’s surface. The parameters fbreed and
shreed designate the number of chro-
nons a fish and a shark respectively must -
exist before each has a single offspring.
(Both species are apparently partheno-
genic.) Finally, starve specifies the num-
ber of chronons a shark has in which to
find food. H it swims about any ionger
than this without eating, it dies and sinks
out of sight. During each chronon WA-
TOR moves each fish and each shark
once and displays- the results on the
screen. With rules no-more complicated
than these, one can watch the ecology of |
Wa-Tor lurching from crisis to crisis.

Magi and I have witnessed a number
of five-parameter stenarios in which
Wa-Tor’s ocean became overpopulated
with fish only to have the sharks eventu-
ally multiply to a point where all the fish
were eaten and the sharks died. On oth-
er occasions we have seen all the fish in
one large school being eaten. The sharks

that had gorged themselves finally

starved, never discovering a very small
cluster of fish nearby. On a few occa- -
sions we have seen the prey-predaior re-
lation sustain itself through two or even
three population cycles before the ulti-
mate crash in shark population. Noth-
ing in the parameters selected for those
scenarios, however, gave any hint of
the characteristics that would ensure

“an etérnal ecology. How had the deni-

zens of Wa-Tor survived?

It has been said that biology is destiny,
Magi and I are tempted to declare that
ecology is geometry, at least as far as the
planet Wa-Tor is-concerned. The ulti-
mate fate of a given scenario does not




seem to depend on the initial random
distribution of a specified number of
sharks and fish. Nor does it seem to de-
pend in an accidental way on the actual
random movement of sharks and fish.
Instead the likelihood of a population
crash appears to follow closely the fish-
shark geometry that manifests itself
on our screens: the more highly organ-
ized and localized either population be-
comes, the likelier it is that the ecology
is doomed. Meditating on this theme,
we were led to wonder how we might
choose the five parameters in a way
tending to break up the geometry. Then
came a flash of insight: if sharks had
congregated at the edges of a school of
fish, one way to break up the resulting
geometry would be to have the sharks
breed less often. The congregation itself,
after all, was less the resuit of motion
than it was of breeding.

Before forming this hypothesis we
had chosen roughly equal breeding
times for sharks and fish. Balanced re-
production rates, we thought, would re-
sult in balanced populations. This kind
of vague thinking probably accounts
for many woeés in today’s technological
world. In any event, I put 200 fish and 20
sharks in my 32-by-14 ocean and set the
fish to breed every three chronons but
barred any shark from reproducing be-
fore 10 chronons had elapsed. Shark
starvation time was set more or less ar-
bitrarily at three chronons. We were re-
warded, after watching my rather slow
program for 15 minutes, by secing a full
recovery from the initial population
decline. Moreover, the geometry, al-
though it was still present, was more
suggestive than definite. Schools were
shapeless conglomerations with ragged
edges, and at some places on the screen
sharks and fish milled about at random.

I let the program run all afternoon,
glancing up occasionally from more im-
portant matters on my desk. The pro-
gram ran all night, and when I visited
my office after my morning lecture, 1
found fish and sharks still pursuing a
cyclic existence. Here was Wa-Tor!
~ There are many ways to implement
a WATOR program but perhaps the
simplest involves a number of two-
dimensional arrays. 1 use five arrays

called FISH, SHARKS, FISHMOVE,

SHARKMOVE and STARVE. These
arrays, all 32 by 14, keep track of the
positions and ages of sharks and fish.

Specifically, FISH(LI) represents the

presence or absence of a fish at the point
with coordinates (I,J). If a fish is absent,
the positicn has the value —1. Other-
wise it contains a record of the age
in chronons of the fish that is present.
The same scheme is used for the array
SHARKS to keep track of the positions
and ages of the sharks. The array FISH-
MOVE holds a record at each position
of whether a fish has been moved there
during the current computational cycle.

L f .
E
. A
| . P
: . \ N
Yo
i
PN - ?/
A realistic view of sharks eating fish
ey
Faa DD
) L
N m
L A
D oy D o
] s ks
fan) fah)
I
Fan A Fan iy
o
o o0 &0
A [&A)
P Wi an FanY D
& per 7
n D N N
AR m Ty (0 ()
Ry -
Jan) Pan) Fan Fan
L T Ry
oD O o)
Pas Dy Dy
g g A
Fan
7
faa) Oy D) o
purg A I
Fan fan} fan
L/ A
D Dy (M
& R
£

A more easily programmed view, in which circles represent sharks and dots represent fish




Such a record enables the program to
avoid moving a fish twice during the
same chronon. SHARKMOVE fulfills
the same function for sharks. The array
called STARVE registers the time at
which a shark last ate. If there is no
shark at a position, the entry is —1.

INTERNATIONAL
DATELINE

EQUATOR

The simplest display of the action on
Wa-Tor is a line of characters on the
screen for each row in the arrays; a
blank at a position means it is unoccu-
pied. A period () represents a fish and
a zero (0) represents a shark. Although
this display might seem to be limited, it

INTERNATIONAL
DATELINE

EQUATOR

EQUATOR

" INTERNATIONAL
DATELINE

is surprisingly informative and enjoy-
able to watch. 4

In WATOR’s initial phase the re-
quired numbers of fish and sharks are
scattered uniformly over the toroidal
ocean. The program then cycles through
the three segments or subprograms de-
scribed below; each program cycle oc-
curs during one chronon of time.

FISH SWIM AND BREED:

For each fish in the FISH array, the pro-
gram makes a list of adjacent unoccu-
pied positions and moves the fish to one
of these at random. This means FISH
must be set to — 1 at the old position and
set to the fish’s current age at the new
position. The array FISHMOVE is up-
dated in the manner described above. If
the fish’s age equals fbreed, the program
puts a new fish at the old position and
gives age O to both fish. Again FISH-
MOVE records the new fish. If all adja-
cent positions are occupied, the fish does
not move or breed.

SHARKS HUNT AND BREED:

For each shark in the SHARK array, the
program makes a list of adjacent fish
positions (if any). The shark chooses one
of these at random, moves there and eats
the fish. This means not only that the
program must modify SHARKS and
SHARKMOVE as it modified FISH
and FISHMOVE, but also that it must
set the corresponding position in the
FISH array to —1. Also, STARVE at
that position is set to 0. If there are no
adjacent fish, the shark moves just as
a fish does. If the shark’s age equals
shreed, a new shark is produced in ex-
actly the same way as a new fish is.

DISPLAY:

The program scans both the FISH array
and the SHARKS array. It displays a
period for each fish and a O for each
shark. The display can be done all at
once in this way or broken into two
parts: one executed after the fish have
moved, the other executed after the
sharks have moved.

To populate the initial ocean, the pro-
grammer constructs a loop that gener-
ates two random numbers nfish times.
The numbers are scaled to the horizon-
tal and vertical dimensions of the ocean
he or she intends to have. At each of the
random positions thus selected, the pro-
gram places a fish in the FISH array and
assigns it a random age between 0 and
Jbreed. Sharks are distributed similarly.
In both cases the position is checked to
see if it 15 already occupied. The effect
of giving both sharks and fish random
ages is that they then breed at random
times in a natural way. Without this
precaution one would witness the sharks
and fish suddenly doubling in numbers,
a disconcerting and unnatural sight.

There may be novice programmers




who find the foregoing description a
bit too general to form any clear idea
of how to write a WATOR program.
Those programmers can begin by writ-
ing what is known as a staggering-drunk
program. Such a program might consist
of a single loop (say a while-loop) that
has seven instructions. These are writ-
ten in nonprejudicial algorithmic lan-
guage. Assignments are indicated by
left arrows and the variables X and
Y are the coordinates of a staggering
drunk. They are altered according to
the random integer assigned to a varia-
ble direction. Depending on whether this

integer equals 0, 1, 2 or 3, the drunk (a
point on the screen) moves north, east,
south or west.

direction < integer part

of (random X 4)
if direction = 0 then ¥+ X+ 1
if direction =1 then ¥~ X—1
if direction =2 then Y< Y+ 1
if direction = 3 then Y< ¥ —1
display (X, 1)

If your particular random-number gen-
erator produces a decimal number ran-
dom between 0 and 1, this algorithm will

scale it to a decimal number the value of
which lies between 0 and .3999. The in-
teger part of the resulting number must
be 0, 1, 2 or 3.

I cannot claim that watching a point
of light wandering minutely on your
screen matches the ecological drama of
the sharks and fish, but writing this pro-
gram does give some insight into how
parts of WATOR might be constructed.

Expert programmers reading this col-
umn will have thought of other ap-
proaches to writing the WATOR pro-
gram. The amount of processing can be
greatly reduced by using linked lists to

1501
140
130 -
120 -
110~
100 |-
90 -
80 |- p—s
70
80
508

PCPULATICON (THCUSANDS)

40

30 _

204 . 4
0 A '

o3

o—eth l

@ VARYING HARE
o CANADIAN LYNX

NS

A

I D S (R

1850 '52 54 '56 58 60 62 ‘64

‘66 68 70 72 74 ‘76 T8 '80 ‘82

B4 86

B8 'S0 92 94 96 '98 1900

Numbers of fynxes and hares (in units of 1,000) trapped for the Hudson’s Bay Cempany from 1850 to 1960

POPULATION 2>

PREY

TME ——>

A theoreticil predator-prey relation: a solution 1o the Lothe-Volterra equations

T



keep track of sharks and fish. With such
a data structure the time required for
one computational cycle is proportional
to the number of sharks and fish present
and not to the size of the ocean.
WATOR may yield some insights into
animal populations here on earth. We
know that small populations face a high
probability of extinction and, even if
neither predators nor prey die off, they
are almost certain to undergo cyclic

changes in number. In simple predator-

prey ecosystems the predator and prey
populations sometimes follow two over-
lapping cycles of population maxima
and minima. The sizes of the popula-
tions of the varying hare and the Cana-
dian lynx recorded by the Hudson’s
Bay Company from 1847 to 1903 in
the Canadian subarctic follow this pat-
tern [see illustration on preceding page).
The figures give the number of each
species trapped from one year to the
next. Presumably these numbers are
proportional to the actual population
sizes present during this period. If they
are, the cycles are easily explained as
the result of lynxes eating their way
into an ever increasing hare population
that begins to decline as the number of
lynxes increases. Soon there is less food
for the lynxes and they begin to starve,
breed less or both. When the lynxes are
reduced in numbers, the hares begin
once again to multiply.

Contrasted with this chart is a smooth
set of curves representing a solution
to the Lotke-Volterra equations. These
equations were first formulated in 1931
by V. Volterra, an Italian mathemati-
cian. They assume what might be called
a continuous predator continuously in
search of a continuous prey. The solu-
tions to these equations exhibit a cyclic
variation that, at first glance, appears to
reflect the lynx-hare empirical data. Bi-
ologists are not in agreement, however,
that the lynx-hare numbers are explica~
ble by such simple reasoning. For one
thing, at least two other predators of
hares are involved: microbes and man.

It makes perfectly good sense, how-
ever, to compile statistics on the sharks
and fish of Wa-Tor, and Magiand I have
done so. Qur recent graphs of the shark
and fish populations tend to look more
like the lynx-hare charts than the Lotke-

Volterra solutions do. Still, we continue-

to be puzzled by the long-term instabili-
ty shown by certain parameter combi-
nations. Perhaps some réader, working
with his or her own WATOR program,
will provide further insight. Is there
some kind of general rule we might use
to predict, for a given combination of
parameters, whether the resulting ecol-
ogy will be stable? To what extent do
the cyclic fluctuations follow the Lotke-
Volterra equations?

The ocean of Wa-Tor is toroidal for a
very simple reason: it is much easier to
write a program for an ocean that hasno

22

boundary or shore. If the ocean is to be,
say, 32 units wide, it is a simple matter to
use numbers modulo 32 as the X coordi-
nates of fish and sharks. If they have X
coordinate 31 and appear on the right-
hand side of the screen during one chro-
non, they may well have X coordinate
32 = 0 and appear on the left side dur-
ing the next chronon. The same system
is used vertically.

The toroidal ocean of Wa-Tor gives
rise to some very strange effects, as ex-
emplified by the following puzzles. The
first of these effects involves a bug in an
early version of my WATOR program.
This bug caused each fish to swim one
unit north and each shark to swim one
unit east during each chronon of time.
Thus a shark got to eat a fish only if it
found itself occupying the same loca-
tion as its prey. In the ocean below, how
many fish were never eaten by sharks?

Another puzzle involves intelligent

sharks and fish. Suppose each shark and
each fish takes turns moving to any of
its four neighborhood points. It turns
out that a single fish, if it is intelligent
enough, can always evade a single shark,
no matter how intelligent the predator.
In the toroidal ocean of Wa-Tor, two
sharks hunting a lone fish may produce
a -different ending. If you endow each
creature with all the intelligence you
like, even allowing the sharks to hunt
cooperatively, can you discover a way
out for the fish? The result does not de-
pend on the dimensions of the ocean.

The subject of perceptrons [“Comput-
er Recreations,” September] remind-
ed some readers of applications and
spurred others to investigate the sub-
ject on their own. Ed Manning of Strat-
ford, Conn., builta “perceptron of sorts”
10 years ago designed to convert real
images into the digitized squares of a
percepiron’s retina. Manning was one
of a few people who noticed a mistake
in the multiple-rectangle window per-

'ceptron shown at the top of page 34

of the September issue: the last four
demon patterns should each be half
blue and half white. Manning wondered
whether the mistake was “intentional to
plumb readership.” I am tempted to say
that it was.

Gary D. Stormo, an mvestlgator in
the Department of Molecular, Cellular
and Developmental Biology at the Uni-
versity of Colorado at Boulder, has
used the perceptron concept in auto-

mated pattern recognition. Specifically,

he has constructed a perceptron-weight-

ing function to recognize binding sites
in messenger-RNA nucleotide sequen-

ces. He uses the perceptron convergence

theorem to guide the performance of his

perceptron toward an optimal level. The

results have been very encouraging: the
perceptron recognizes binding sites with
“substantial success.”

Any window perceptron that includes

either an all-white or an all-black win-

dow pattern in its list is a good percep-
tron. Lowell Hill of Venice, Calif., not-
ed this and wondered whether an all-
white or an all-black retina constitutes
a legitimate picture. The answer de-
pends on the pattern. It seems reason-
able, in the case of the multiple-rectan-
gle perceptron, to regard an all-black
retina simply as one large rectangle.

In the course of a most successful
foray into the mini research project 1
suggested, Constantine Roussos of the
Lynchburg College Computer Center
in Lynchburg, Va., decided to exclude
window perceptrons with all-white or
all-black window patterns. Among his
achievements is a characterization of
good perceptrons (those that recognize
at least one pattern). The characteriza-
tion uses translational relations between
the window patterns on the perceptron’s
list. If one shifts a window pattern by
a single unit in any of the four principal
directions, one must obtain another win-
dow pattern on the list. Roussos then
concentrated on minimal window per-
ceptrons, those with a list that cannot
be further reduced without destroying
the goodness of the perceptron. Such
perceptrons are building blocks for the
set of all good perceptrons. Roussos
wrote a computer program that discov-
ered all minimal window percepirons
having list sizes of orders 2 through
5. No minimal window perceptron of
order 6 exists. Roussos raises a chal-
Ienge by turning around the task I had
set: I proposed that readers find a pat-
tern recognized by a given perceptron;
Roussos suggests discovering a percep-
tron that recognizes a given pattern.

John M. Evans of Hartford, Conn.,
blames perceptron failings on the re-
striction inherent in a two-level hier-
archy of local demons reporting to a
single head demon. By introducing a
kind of demonic middle management,
Evans overcomes the connectivity lim-
itations for ordinary perceptrons dis-
covered by Minsky and Papert. The
low-level demons themselves constitute
a kind of retina whose blacks and whites
correspond to whether particular de-
mons report or not. A second layer of
demons watches the pattern created by
the low-level demons; it reports the
presence of subpatterns to the head de-
mon. A three-layer device can distin-
guish which of the four test patterns are
connected and which are not.




