Project 1 Design Document								Version 1.0
Dan Bennett	(Theoretical)					 	 			3/19/2021
Table of Contents
Project Overview	2
Top Level Functions	3
ResultT (Enumeration)	5
PlayerT (Structure)	6

[bookmark: _Toc67217044]Project Overview
This project is to implement an interactive text based version of the game Hi-Ho Cherry-O! This game is played with four players, either human or computer. The implementation will involve enumerated types, structures and an array of players.

Structure Chart
[image:]

[bookmark: _Toc67217045]Top Level Functions
The main logic simulates the playing of a game.
This program, will use an array of players.
Main
Narrative: For each round, allow players to take a turn until a winner is found.

Get Players Info
While not done with the game
 For each player
 Take a turn
 If the player has collected all ten cherries
 Finished is true
 Print the current status of the game
Print the winning statement

Function: GetPlayersInfo
Narrative:
Input: An uninitialized array of players.
Output: The array of players with all players initialized.

For each player
	Set computer players to 0
	GetPlayerInformation(player, computerPlayers)

Function: GetPlayerInformation
Narrative:This will get the information for an individual player
Input: The empty player structure and the number of computer players
Output: The completed player structure

GetPlayer using the player function
If the player is a computer, increment the computer players by 1.

[bookmark: _Hlk67214929]Function: PlayerTakeTurn
Narrative: This function will allow a player to take a trun.
Input: The player
Output: The modified player

Spin the spinner
Compute the number of cherries to move based on the player’s bucket and the result of the spinner
Move the correct number of cherries.

Function: ComputeCherriesToMove
Narrative: Compute the number of cherries to move based on the spinner and the bucket.
Input: A spinner result, the number of cherries in the plyer’s bucket.
Output:The number of cherries to move.

Move = GetRawResultMove
If the spiner is spill bucket
	Move = bucket
If bucket is less than 2 and move is -2
 Move = bucket
If bucket + move > 10
 Move = 0

Return move

Function: GetRawCherriesMove
Narrative: Compute the raw result move
Input: A spinner result,
Output:The number of cherries to move.

This is a big case statement.
If the result is bucket,
 return -10
If the result is bird or dog
 return -2
Otherwise return the number of cherries.

[bookmark: _Toc67217046]ResultT (Enumeration)
ResultT will describe the outcome of a spin on the spinner.

Properties
A ResultT may be
ONE_CHERRY		BIRD
TWO_CHERRIES		DOG
THREE_CHERRIES		SPILL_BASKET
FOUR_CHERRIES		UNKNOWN

Behaviors
	Convert a ResultT to a string.
	Convert an integer to a ResultT
	Generate a random ResulT

Special Considerations
	Create a constant, NUMBER_OF_RESULTS that represents the number of possible results.

Function: ResultTToString
Narrative:	Provide a string for the given ResultT
Input: A ResultT
Output: A string

Just a large switch/case statement that assigns the correct string to a resultT

Function: IntToResultT
Narrative: convert an integer to a ResultT
Input: an integer.
Output: a ResultT

Cast the given integer to a result.
This will map the integer into the proper range using the mod function.

Function: RandomResulT
Narrative: This will generate a random result uniformly distributed between all values except UNKNOWN which will not be included.
Input: None
Output: A random result.

Generate a random integer between 0 and NUMBER_OF_RESULTS-1
Return the value of this using IntToResulT

[bookmark: _Toc67217047]PlayerT (Structure)
This structure represents a player in the game.

Properties
	The player’s name. A simple string
	The player’s type (Human or Computer)
	The count of cherries in the player’s bucket, an integer.

Behaviors
	Print a player
	Get Player
	Get a human player
	Generate a computer player

Function: Print Player
Narrative: This will print information about a player
Input: The player structure
Output: None

Print the player name, type and bucket count.

Function:GetPlayer
Narrative: This function will ask for details about a human player.
Input: The number of computer players so far
Output: A completed player structure
	A modified number of computer players

Set bucket to 0
Ask for type
If type is human
 GetHumanPlayer
Else
 GetComputerPlayer

[bookmark: _Hlk67215364]Function:GetHumanPlayer
Narrative: This function will ask for details about a human player.
Input: A partially completed player structure
Output: The completed structure

Get the human player name from the player
Set the type to be human

Function:GetComputerPlayer
Narrative: This function will set the details for a computer player
Input: A partially completed player structure
	The current number of computer players
Output: The completed structure

Get the name based on the number of computer players so far
Set the type to be computer.

												Page 6
image1.tmp
GetPlayersint

GetPlayerinio

GetPlayer

Man

TakeTum

PrntWininformation

‘Spinspinner

ComputeCheresToMove

PrintPlayersiatus

GetHumanPlayer

GetComputerPlayer

‘ComputeRawCherresTobove

